在你的Rust程序中使用Deref和DerefMut trait

Deref Deref 是一种 Rust 编译器宏,用于实现 Deref trait。Deref trait 允许将自定义类型转换为引用,从而使其能够用于任何需要引用的地方。 Deref 宏通常用于以下场景: 新类型模式: 当您定义一个新类型时,deref 宏可以使其能够像引用一样使用。例如,您可以创建一个 Box 类型,该类型将值存储在堆上,并实现 Deref trait 以便可以使用 * 运算符访问值。 链式访问: deref 宏可以用于创建链式访问语法。例如,您可以创建一个 Vec<Box<T>> 类型,其中 T 是任何可实现 Deref trait 的类型。这允许您使用 * 运算符在向量中迭代并访问每个值。 泛型代码: deref 宏可以用于编写泛型代码,该代码可以与任何可实现 Deref trait 的类型一起使用。例如,您可以创建一个函数,该函数接受任何可实现 Deref trait 的类型并返回其值。 deref宏在 Rust 中扮演着重要的角色,它允许你自定义类型在特定情况下表现得像引用一样。这带来了许多便利,例如: 简化访问底层数据: 无需手动解引用,直接访问结构体内部数据。 使用运算符重载: 使自定义类型支持 * 和 [] 等运算符。 自动解引用: 在需要引用的地方,自动解引用自定义类型。 实用例子 1. 自定义智能指针 use std::ops::Deref; struct MyBox<T>(T); impl<T> Deref for MyBox<T> { type Target = T; fn deref(&self) -> &Self::Target { &self....

一些Rust的机器学习资料

代码示例 ONNX web interface to YOLOv8 object detection neural network implemented on Rust. 仓库地址 Client/server face detection from your webcam with tokio, axum, tract-onnx and the lightweight ultraface network. 仓库地址 Segment anything inference using Rust llm https://github.com/jondot/awesome-rust-llm https://github.com/gabotechs/MusicGPT 其他 https://github.com/rustai-solutions 文章 图书

一些rust clap库的笔记

小试牛刀 clap是rust下面的一款命令行解析的库,下面是一些使用的笔记。 在Cargo.toml中添加下面的依赖 [dependencies] clap = {version = "4",features = ["derive"]} 对应feature的作用如下: 默认特性 std: Not Currently Used. Placeholder for supporting no_std environments in a backwards compatible manner. color: Turns on colored error messages. help: Auto-generate help output usage: Auto-generate usage error-context: Include contextual information for errors (which arg failed, etc) suggestions: Turns on the Did you mean '--myoption'? feature for when users make typos. 可选特性 deprecated: Guided experience to prepare for next breaking release (at different stages of development, this may become default) derive: Enables the custom derive (i....

使用 Pest 和 PEG 构建 Rust 解析器【译】

本文原为为 https://blog.logrocket.com/building-rust-parser-pest-peg/,使用Google翻译进行机翻,部分内容做了细微润色。 编写一个高效的词法分析器对来解析复杂的结构可能具有挑战性。如果格式或结构是固定的,并且您必须以易于理解、维护和扩展以适应未来更改的方式编写解析器,那么这会变得更加复杂。 在这些情况下,我们可以使用解析器生成器,而不是手写解析器或手动解析我们的项目。在本文中,我们将回顾什么是解析器生成器,并探索一个名为 Pest 的 Rust 解析工具。我们将涵盖: [TOC] 请注意,您应该能够轻松地阅读和编写基本的 Rust 代码,例如函数、结构和循环。 什么是解析器生成器? 解析器生成器是一些程序,它接受解析器需要考虑的规则,然后以编程方式为您生成一个解析器,该解析器将根据这些规则解析输入。 大多数时候,规则以简化语言(例如正则表达式)提供给解析器生成器。因此,当您想要通过更改规则或添加新规则来更新解析器时,您只需更新或添加规则的正则表达式即可。然后,当您运行解析器生成器时,它将重写解析器以适应这些规则。 可以想象使用这样的解析工具可以节省多少时间。许多解析器生成器还会生成词法分析器,因此您不必自己编写词法分析器。如果生成的词法分析器不适合您,您可以选择使用您自己的词法分析器运行解析器(如果需要)。 目前,Rust 生态系统中有多个解析器生成器可供您使用。其中最受欢迎的三个是 LalrPop、Nom 和 Pest。 LalrPop 与 Yacc 非常相似,它让您定义规则和相应的操作。我个人用它来为我的 8086 模拟器项目编写规则。 Nom 是一个解析器组合器库,您可以在其中将规则编写为函数组合。这更面向解析二进制输入,但也可用于解析字符串。 最后,Pest 使用 Parsing Expression Grammar 来定义解析规则。我们将在这篇文章中详细探讨 Rust 与 Pest 的解析。 Pest 中的解析表达式语法是什么? 解析表达式语法(PEG)是用 Pest 定义 Rust 解析“规则”的方法之一。 Pest 接受具有此类规则定义的文件的输入,并生成遵循它们的 Rust 解析器。 在编写规则时,您应该考虑 Pest 和 PEG 的三个定义特征。 第一个特点是贪婪匹配。 Pest 将始终尝试将输入的最大值与规则相匹配。例如,假设我们编写了如下规则: match one or more alphabets 在这种情况下,Pest 将消耗输入中的所有内容,直到达到数字、空格或符号。在此之前它不会停止。 要考虑的第二个特征是交替匹配是有序的。为了理解这意味着什么,假设我们给出了多个匹配来满足一条规则,如下所示: rule1 | rule2 | rule3 Pest 将首先尝试匹配 rule1 。当且仅当 rule1 失败时,Pest才会尝试匹配 rule2 ,依此类推。如果第一条规则匹配,Pest 将不会尝试匹配任何其他规则来找到最佳匹配。...

使用rust操作mongodb

准备工作 使用rust进行mongodb连接需要添加依赖,在Cargo.toml中添加下面的依赖 [dependencies] mongodb="2" serde = "1" 添加serde的原因是我们建模的时候需要用。 预备知识 连接数据库 下面是我们的本地数据库连接 const CONNECT_STR:&str = "mongodb://czyt:czyt@192.168.1.21:27017"; 然后使用连接字符串进行数据库连接 let mut client_options = ClientOptions::parse_async(CONNECT_STR).await?; // Set the server_api field of the client_options object to Stable API version 1 let server_api = ServerApi::builder() .version(ServerApiVersion::V1) .build(); client_options.server_api = Some(server_api); // Create a new client and connect to the server let client = Client::with_options(client_options)?; // Send a ping to confirm a successful connection client.database("admin").run_command(doc! { "ping": 1 }, None)....

enum_dispatch在rust中的简单使用

请先看下面这个例子: enum Creatures { Dog(Dog), Cat(Cat), } trait Animal { fn make_sound(&self); } struct Dog; struct Cat; impl Animal for Dog { fn make_sound(&self) { println!("Bark!"); } } impl Animal for Cat { fn make_sound(&self) { println!("Meow!"); } } fn main() { let animals: Vec<Creatures> = vec![ Creatures::Dog(Dog), Creatures::Cat(Cat), ]; for animal in animals { match animal { Creatures::Dog(dog) => dog.make_sound(), Creatures::Cat(cat) => cat.make_sound(), } } } 在 main 函数中,我们创建了一个名为 animals 的 Vec<Creatures> 向量,其中包含不同种类的生物。遍历 animals 向量时,使用 match 语句来确定每个生物的实际类型,然后调用相应实例的 make_sound 方法。...

使用Mono.Cecil自动补丁.net程序

坚果云是我常用的一个工具,但是我一般喜欢使用绿色版,不喜欢程序到处写文件,也不喜欢重装以后还要各种登录。所以要折腾“绿色版”来使用。坚果云的完整版下载链接为 https://pkg-cdn.jianguoyun.com/static/exe/installer/NutstoreWindowsWPF_Full.exe 手动IL处理 一般手动处理坚果云的个人用户资料目录。需要使用dnspyEx,然后修改NutstoreLib.dll中的Utils.DirectoryUtils下的APPDATA_NUTSTORE_DIR,下面是我的一个手动IL修改列表: 0 0000 call string NutstoreLib.Utils.DirectoryUtils::get_NUTSTORE_INSTALL_DIR() 1 0005 newobj instance void [mscorlib]System.IO.DirectoryInfo::.ctor(string) 2 000A call instance class [mscorlib]System.IO.DirectoryInfo [mscorlib]System.IO.DirectoryInfo::get_Parent() 3 000F callvirt instance string [mscorlib]System.IO.FileSystemInfo::get_FullName() 4 0014 ldstr "UserData" 5 0019 call string [Pri.LongPath]Pri.LongPath.Path::Combine(string, string) 6 001E ret 自动IL处理 借助Mono.Cecil我们可以实现上面的功能,自动进行dll的patch修改。 注:因为我不喜欢调用太多的库,所以Pri.LongPath.Path::Combine(string, string)我改为了系统的库 完整代码如下: using System.Linq; using Mono.Cecil; using Mono.Cecil.Cil; namespace NutstoreAutoPatch { internal class Program { public static void Main(string[] args) { const string nutstoreLib = "NutstoreLib.dll"; const string directoryutils = "NutstoreLib....

一些软件开发设计中的坑  [draft]

业务流程 服务可用状态 在某些项目下,检测服务使用的是ping包,这是一种常见的网络监控方法。Ping操作基于ICMP(Internet Control Message Protocol)协议,用于测试另一台主机是否可达。这个方法有其优势也有其弊端: 优势: 简单易用:Ping是大多数操作系统内置的工具,无需额外安装软件即可使用。 快速反应:能够快速地检测到服务器是否在线并响应,它提供了一个基本水平的可达性检查。 低资源消耗:Ping包很小,对于网络和服务器的资源使用非常有限,基本不会对服务器性能产生影响。 跨平台:Ping在大多数网络设备和操作系统中都是支持的,所以它通常可以跨平台工作。 问题诊断:能帮助诊断网络问题,例如,了解到数据包丢失的问题和网络延迟的情况。 弊端: 有限的信息:Ping只能告诉你服务器是否响应ICMP请求,但它不能提供关于服务器实际运行状况或在应用程序层的问题的信息。 被阻止的可能性:一些服务器或网络可能配置了防火墙规则来阻止ICMP请求,使得Ping检测方法无效。 不保证服务状态:服务器响应Ping请求不代表服务器上的服务(如HTTP,数据库服务等)运行正常。 网络优先级:在网络负载较重时,ICMP包可能会被网络设备设置为低优先级处理,从而导致误报。 安全风险:Ping可能会被用于执行拒绝服务攻击(如Ping泛洪),一些组织可能会出于安全原因禁用对外的ICMP响应。 欺骗的可能:网络攻击者可以伪造ICMP回应包(ping回应),误导监控系统。 综上所述,ping只能作为服务器可达性的一个基本检查。它适合用作第一层面的监测工具,但对于复杂的系统或者需要准确反映服务状态的场景,建议使用更高级的监控方法,例如HTTP健康检查、端口监控或者利用特定的 agent 来收集服务的详细指标。

让你的ssh连接更安全

缘起 最近服务器日志有一些ssh的暴力破解登录记录。所以尝试使用下面几个方案来保证ssh的安全。 修改ssh配置 对 SSH 进行安全加固可以通过多种不同的策略和手段来实行,以下是一些有效的措施: 禁用 Root 登录: 修改 SSH 配置文件 /etc/ssh/sshd_config 中的 PermitRootLogin 选项,将其设置为 no,以防止通过 SSH 使用 root 用户直接登录服务器。 使用公钥加密: 如前所述,通过使用基于密钥的认证来替代密码认证可以极大地提高安全性。 限制用户 SSH 访问: 在 /etc/ssh/sshd_config 中使用 AllowUsers 或 AllowGroups 指令来限制那些用户或者组可以通过 SSH 登录。同样,可以使用 DenyUsers 或 DenyGroups 以禁止特定用户或用户组的访问。 SSH 协议版本: 确保使用的是 SSH-2,因为 SSH-1 已知存在安全漏洞。 更改默认 SSH 端口: 修改配置文件中的 Port 选项,将 SSH 服务的监听端口从默认的 22 更改到其他值。 使用 TCPWrappers 限制访问: 通过 /etc/hosts.allow 和 /etc/hosts.deny 控制哪些 IP 地址允许或拒绝访问。 设置连接超时: 设置自动注销用户的超时时间,避免定期保持未使用的 SSH 会话。使用参数 ClientAliveInterval 和 ClientAliveCountMax 控制这些设置。 使用 Two-Factor Authentication(两因素认证): 安装并配置像 Google Authenticator 这样的两因素认证系统,要求用户在登录时提供密码以及来自手机或其他设备的一次性密码(OTP)。 使用 iptables 或 ufw 防火墙: 配置 Linux 防火墙以只允许特定的 IP 地址或 IP 范围来进行 SSH 连接。 限制最大登录尝试次数: 在 /etc/ssh/sshd_config 文件中设置 MaxAuthTries 限制登录尝试的次数。 使用复杂且定期更新的密码: 再次强调即使在启用密钥登录的情况下,也应该使用强密码并定期更新。 监控 SSH 访问日志: 定期查看 /var/log/auth....

设置bun开发环境  [draft]

安装 windows powershell -c "irm http://bun.sh/install.ps1 | iex" 安装组件 npm bun install -g npm 配置npm镜像源 npm config set registry https://registry.npmmirror.com // 查询 npm config get registry